Nonvolatile optically-erased colloidal memristors.

نویسندگان

  • Christopher F Huebner
  • Volodymyr Tsyalkovsky
  • Yuriy Bandera
  • Mary K Burdette
  • Jamie A Shetzline
  • Charles Tonkin
  • Stephen E Creager
  • Stephen H Foulger
چکیده

A nonconjugated methacrylate terpolymer containing carbazole moieties (electron donors), 1,3,4-oxadiazole moieties (electron acceptors), and Coumarin-6 in the pendant groups was synthesized via free radical copolymerization of methacrylate monomers containing the respective functional groups. The terpolymer was formed into 57 nm particles through a mini-emulsion route. For a thin 100 nm film of the fused particles sandwiched between an indium-tin oxide (ITO) electrode and an Al electrode, the structure behaved as a nonvolatile flash (rewritable) memory with accessible electronic states that could be written, read, and optically erased. The device exhibited a turn-on voltage of ca. -4.5 VDC and a 10(6) current ratio. A device in the ON high conductance state could be reverted to the OFF state with a short exposure to a 360 nm light source. The development of semiconducting colloidal inks that can be converted into electroactive devices through a continuous processing method is a critical step in the widespread adoption of these 2D manufacturing technologies for printed electronics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferroelectric tunnel memristor.

Strong interest in resistive switching phenomena is driven by a possibility to develop electronic devices with novel functional properties not available in conventional systems. Bistable resistive devices are characterized by two resistance states that can be switched by an external voltage. Recently, memristors-electric circuit elements with continuously tunable resistive behavior-have emerged...

متن کامل

Logic with Unipolar Memristors - Circuits and Design Methodology

Memristors are a general name for a set of emerging resistive switching technologies. These two terminal devices are characterized by a varying resistance, which is controlled by the voltage or current applied to them. The resistance state of a memristor is nonvolatile, and as such makes memristors attractive candidates for use as novel memory elements. Apart from their use for memory applicati...

متن کامل

Organic Memristor Devices for Logic Elements with Memory

Memristors are promising next-generation memory candidates that are nonvolatile, possess low power requirements and are capable of nanoscale fabrication. In this article we physically realise and describe the use of organic memristors in designing statefull boolean logic gates for the AND OR and NOT operations. The output of these gates is analog and dependent on the length of time that suitabl...

متن کامل

Memristive integrative sensors for neuronal activity

The advent of advanced neuronal interfaces offers great promise for linking brain functions to electronics. A major bottleneck in achieving this is real-time processing of big data that imposes excessive requirements on bandwidth, energy and computation capacity; limiting the overall number of bio-electronic links. Here, we present a novel monitoring system concept that exploits the intrinsic p...

متن کامل

Resistive and New Optical Switching Memory Characteristics Using Thermally Grown Ge0.2Se0.8 Film in Cu/GeSex/W Structure

It is known that conductive-bridge resistive-random-access-memory (CBRAM) device is very important for future high-density nonvolatile memory as well as logic application. Even though the CBRAM devices using different materials, structures, and switching performance have been reported in Nanoscale Res. Lett., 2015, however, optical switching characteristics by using thermally grown Ge0.2Se0.8 f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2015